Cambridge International Examinations Cambridge International General Certificate of Secondary Education | Paper 3 (Core) | | February/March 20 | | | |-------------------|--------|---------------------|---------|--| | COMBINED SC | CIENCE | | 0653/32 | | | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | | CANDIDATE
NAME | | | | | 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 20. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. **1 (a)** Fig. 1.1 shows a diagram of the female reproductive system and some of the events that take place before and during early pregnancy. Fig. 1.1 | 1. | the cervix, | | |----|-------------|-----| | 2. | the vagina. | [2] | | (ii) | Describe the events that follow fertilisation leading to the presence of the embryo in uterus as shown in Fig. 1.1. | ı the | |------|---|-------| | | | | | | | | | | | | | | | [2 | **(b)** Use words or phrases from the list to complete the following sentences about reproduction in a plant. Each word or phrase may be used once, more than once or not at all. | a chromosome | a quarter | of a | seed | diploid | half | |-----------------------|-------------------|----------------|--------------|-------------------|------------------| | | haploid | the same | twice | 9 | | | Pollen grains have | | | | nuclei becau | ise they contair | | | | the | amount of ge | netic information | on as the nucle | | of palisade cells. Th | ne nucleus of a f | fertilised egg | g cell is | | | © UCLES 2018 0653/32/F/M/18 (i) On Fig. 1.1 use label lines to identify 2 (a) Copper is extracted from a substance using the apparatus shown in Fig. 2.1. Fig. 2.1 | | | - 19 1 | | |-----|-------|--|-------------| | | (i) | Name this process. | | | | | | [1] | | | (ii) | Complete Fig. 2.1 by labelling the anode, cathode and electrolyte. | [2] | | | (iii) | Name one compound that can be used in this process to extract copper at r temperature. | oom | | | | | [1] | | | (iv) | State what is done to this solid compound before it can be used in this process. | | | | | | [1] | | | (v) | State whether this process for the extraction of copper involves a <i>chemical change</i> physical change. | or a | | | | Explain your answer. | | | | | change | | | | | explanation | | | | | | | | (b) | | tudent finds out that copper can also be extracted by heating a different compound, co
de, with a non-metallic element. | [1]
pper | | | (i) | Name this non-metallic element. | | | | | | [1] | | | (ii) | Name the type of chemical reaction in which copper oxide is changed to copper. | | | | | | [1] | | (c) | | opper is one element in a collection of metals which have high melting points, high densities
nd often act as catalysts. | | | |-----|------|---|--|--| | | (i) | Suggest one other property that is shown by these metals that is not shown by other metals. | | | | | | [1] | | | | | (ii) | State the effect of a catalyst on a chemical reaction. [1] | | | | | | [1] | | | 3 Fig. 3.1 is a diagram which shows the International Space Station which is kept in orbit around the Earth by a force which prevents it escaping into space. | | Fig. 3.1 | |-----|--| | (a) | Name this force. | | | [1 | | (b) | On one of its orbits, the space station travels at a speed of 28 000 km/h and takes 90 minutes to complete one orbit of the Earth. | | | Calculate the distance travelled by the space station during this orbit. | | | Show your working. | | | | | | | | | | | | distance = km [2 | | (c) The mass of the Earth is 5972×10^{2} | |---| |---| The volume of the Earth is $1.08 \times 10^{21} \,\text{m}^3$. Calculate the density of the Earth. State the formula you use, show your working and give the units of your answer. formula working (d) Fig. 3.2 shows the large solar panels that provide energy for the space station. Fig. 3.2 (i) The solar cells are in large panels that face the Sun to gather energy. This energy is stored by charging batteries on board the space station. Complete the sequence of energy conversions that take place. Radiation from the Sun to energy in the solar cells to energy in the batteries. [2] (ii) Each solar cell contains solid crystals of silicon. On Fig. 3.3 below draw a diagram to show the arrangement of atoms in a crystal of silicon. One atom has been drawn for you; you should draw at least 10 more atoms of the same size Fig. 3.3 [2] 4 Fig. 4.1 shows a giant panda which lives in bamboo forests in China. Fig. 4.1 | | | | | · · · · · · | | | |-----|---|-------------|------------------|---------------------------|---------------|---------------------------| | (a) | The panda has the diet of a herbivore. It feeds almost entirely on bamboo shoots. | | | | | | | | Define the term herbivore. | [1] | | (b) | Tab | le 4.1 show | s the mass of p | rotein contained in 100 g | of bamboo | shoots and 100g of beef. | | () | | | · | Table 4.1 | | S | | | | | nutrient | bamboo shoots/g | beef/g | | | | | | protein | 2.6 | 20.0 | | | | (i) | State the r | oles of protein | in the hody | | | | | (') | Otate the r | oles of protein | in the body. | | | | | | | | | | | | | | | | | | [2] | | | (ii) | Calculate t | | mboo shoots needed to p | provide the s | ame amount of protein as | mass = | | g [2] | | | (iii) | Use your a | answer from (ii) | to suggest why the pane | da has to ea | t large amounts of shoots | | , | (, | every day. | anower nem (n) | to ouggest mily the pain | aa 11ao to oa | riargo amounto or oncoto | เวา | | (c) | Deforestation is causing the population of pandas in the area to decrease. | | | | | |-----|--|--|--|--|--| | | Suggest two reasons why deforestation decreases the population of pandas in bamboo forests. | | | | | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | [2] | | | | | **5** Petroleum is a mixture of hydrocarbons. It is separated into useful fractions by the process of fractional distillation. This process is shown in Fig. 5.1. | | Fig. 5.1 | |----------------|---| | (a) (i) | State what is meant by the term <i>hydrocarbon</i> . | | | | | | [2] | | (ii) | Ethane is found in refinery gas. | | | Methane and ethane are both hydrocarbons and form the same products when they burn. | | | Complete the word equation for the complete combustion of ethane. | | ethane | + - + | | | [2] | | (iii) | During the combustion of ethane there is a temperature rise. | | | State the type of chemical reaction that produces a temperature rise. | | | [1] | | (iv) | State one use for bottled refinery gas. | | | [1] | | (b) Oil | and grease are produced from petroleum. | | | scribe how these substances protect iron from rusting. | | Des | some new those substances protect non nom rusting. | | | FA1 | | | [1] | **6** Fig. 6.1 shows two people talking to each other using cordless telephones over a link to a communications satellite. Fig. 6.1 | (| a) | At every | stage wave | motion is | used to | transmit the | conversation. | |---|----|-------------|------------|---|---------|---------------------|---------------| | ١ | ~, | , O v O i y | olago marc | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | acca to | ti di lottili ti lo | conversation. | | (i) | Us | e information from Fig. 6.1 to complete the following sentence. | | |------|-----|---|-------------------| | | | waves transmit the conversation between person d handset A . | ι Α
[1] | | (ii) | Sta | ate two different ways in which microwaves or radio waves are used in Fig. 6.1. | | | | 1. | from to | | | | 2. | from to | LO. | | | | | 12 | (b) Fig. 6.2 shows an incomplete electromagnetic spectrum. | gamma rays | visible light | infra-red
waves | | | |------------|---------------|--------------------|--|--| |------------|---------------|--------------------|--|--| Fig. 6.2 On Fig. 6.2 write microwaves and radio waves in their correct positions in the electromagnetic spectrum. [2] | (c) | The communications satellite can become very warm in the day, but become very cold at night. | |-----|--| | | Explain why these temperature changes happen. | | | | | | | | | [2] | | (d) | Explain why the communications satellite cannot use sound waves to communicate with the Earth. | | | | | | | | | [1] | 7 (a) Table 7.1 shows some facts about processes in living organisms. In Table 7.1, place a tick (\checkmark) in **all** the boxes where the fact about each process is correct. Table 7.1 | fact | process | | | | | | | | |--|-------------|----------------|--------------------|--|--|--|--|--| | lact | respiration | photosynthesis | chemical digestion | | | | | | | needs light | | | | | | | | | | takes place in animals | | | | | | | | | | needs carbon dioxide | | | | | | | | | | produces smaller molecules from larger molecules | | | | | | | | | [4] (b) Some red dye in water is used to identify the xylem in a plant. A plant is placed in the red dye for a few hours. After this time, cross-sections of its stem and its root are prepared and viewed under the microscope. Fig. 7.1 shows the tissues in the stem and in the root. Fig. 7.1 (i) Shade in **one** area in **both** of the drawings in Fig. 7.1 where the red dye can be seen. [2] (ii) Name the cells which absorb water from the soil. [1] (iii) Describe **one** function of water in the plant. [1] (c) Describe the function of phloem in a plant. | 8 | (a) | An | atom of chlorine is re | epresented by the syml | pol: | | |---|-----|------|--|--------------------------|--|------------| | | | | | ³⁵ C <i>l</i> | | | | | | (i) | State the number of | of electrons, neutrons a | nd protons in this atom. | | | | | | electrons | | | | | | | | neutrons | | | | | | | | protons | | | ıo | | | | | | | | [2 | | | | (ii) | Complete Table 8. electrons, neutrons | | charges and approximate relative n | nasses o | | | | | , | Table 8.1 | | | | | | | particle | · | approximate relative masses | | | | | | | Table 8.1 | approximate relative masses | | | | | | particle | Table 8.1 | approximate relative masses | | | | | | particle
electrons | Table 8.1 | approximate relative masses | | | | (b) | | particle electrons neutrons protons orine is a non-metal | relative charges | approximate relative masses e reacts with sodium and with hydrog | [2
gen. | | (| c) | Chlorine | aas is | bubbled | through | solutions of | |---|----|---|--------|---------|---------|--------------| | • | -, | • | 50.0.0 | | | | - sodium bromide, - zinc chloride, - magnesium iodide. | | Predict which solutions react with chlorine gas. | | |-----|--|-----| | | | [1] | | (d) | State the test and the positive result for chlorine gas. | | | | test | | | | result | | | | | [2] | **9** Fig. 9.1 shows a simple circuit set up to investigate the electrical properties of a lamp. Fig. 9.1 (a) (i) On Fig. 9.2 use the correct symbols to complete the diagram for the circuit shown in Fig. 9.1. [2] (ii) On Fig. 9.2, using the correct circuit symbol, connect a meter into the circuit that can measure the potential difference across the lamp. [2] | (b) | | battery has a voltage of 1.5 V, and the reading on the ammeter is 0.6A for the circu 9.1. | it in | |-----|------|---|-------| | | (i) | Calculate the resistance of the lamp and state the units. | | | | | State the formula you use and show your working. | | | | | formula | | | | | working | | | | | | | | | | | | | | | resistance = unit unit | . [3] | | | (ii) | A second identical lamp is added in series with the lamp in the circuit in Fig. 9.1. | | | | | The reading on the ammeter decreases. | | | | | Explain why this happens. | | | | | | | | | | | | | | | | [2] | ## **BLANK PAGE** ## **BLANK PAGE** The Periodic Table of Elements | | | 2 | Не | helium
4 | 10 | Ne | neon
20 | 18 | Ar | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|-----|---|----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|--------|-----------------|----|----|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | II/ | | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | Н | iodine
127 | 85 | ¥ | astatine | | | | | | > | | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | Те | tellurium
128 | 84 | Ро | polonium
– | 116 | ^ | livermorium
- | | | > | | | | 7 | z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | <u>.</u> | bismuth
209 | | | | | | ≥ | | | | 9 | O | carbon
12 | 14 | Si | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Ър | lead
207 | 114 | ŀΙ | flerovium | | | ≡ | | | | 2 | Ω | boron
11 | 13 | Νſ | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | lΤ | thallium
204 | | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | පි | cadmium
112 | 80 | Ρ̈́ | mercury
201 | 112 | ပ် | copernicium | | | | | | | | | | | | | 29 | D
O | copper
64 | 47 | Ag | silver
108 | 62 | Αn | gold
197 | 111 | Rg | roentgenium
– | | Group | | | | | | | | | | | 28 | ï | nickel
59 | 46 | Pd | palladium
106 | 78 | 瓧 | platinum
195 | 110 | Ds | darmstadtium
- | | Gre | | | | | | | | | | | 27 | රි | cobalt
59 | 45 | 格 | rhodium
103 | 77 | 'n | iridium
192 | 109 | ¥ | meitnerium
- | | | | _ | I | hydrogen
1 | | | | | | | 26 | Ьe | iron
56 | 44 | Ru | ruthenium
101 | 9/ | SO | osmium
190 | 108 | Hs | hassium | | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | 뮵 | bohrium
– | | | | | | | | pol | ass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | qN | niobium
93 | 73 | Та | tantalum
181 | 105 | Оþ | dubnium
– | | | | | | | | ato | rels | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 弘 | rutherfordium
- | | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89-103 | actinoids | | | | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ва | barium
137 | 88 | Ra | radium | | | _ | | | | 3 | := | lithium
7 | # | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | Rb | rubidium
85 | 55 | Cs | caesium
133 | 87 | Ŧ | francium
— | | Lu
Lu | lutetium
175 | 103 | ۲ | lawrencium | ı | |------------------------|---------------------|-----|-----------|--------------|-----| | vo
Vp | ytterbium
173 | 102 | 8 | nobelium | ı | | mT | thulium
169 | 101 | Md | mendelevium | ı | | ее
П | erbium
167 | 100 | Fm | ferminm | 1 | | 67
Ho | holmium
165 | 66 | Es | einsteinium | _ | | ®
Dy | dysprosium
163 | 86 | ರ | californium | - | | e5
Tb | terbium
159 | 26 | 益 | berkelium | - | | Gd
Gd | gadolinium
157 | 96 | Cm | curium | _ | | e3
Eu | europium
152 | 92 | Am | americium | ı | | ss
Sm | samarium
150 | 94 | Pu | plutonium | _ | | Pm | promethium
- | 93 | Δ | neptunium | - | | °° Z | neodymium
144 | 92 | \supset | uranium | 238 | | ₆₈ ଦ | praseodymium
141 | 91 | Ра | protactinium | 231 | | Ce
Ce | cerium
140 | 06 | ┖ | thorium | 232 | | 57
La | lanthanum
139 | 68 | Ac | actinium | 1 | lanthanoids actinoids The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.). To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.